Lecture Note on Linear Algebra

14．Linear Independence，Bases and Coordinates

Wei－Shi Zheng， wszheng＠ieee．org， 2011

November 3， 2011

1 What Do You Learn from This Note

Do you still remember the unit vectors we have introduced in Chapter 1：

$$
\vec{e}_{1}=\left(\begin{array}{l}
1 \tag{1}\\
0 \\
0
\end{array}\right), \vec{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \vec{e}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

They are a set of vectors which are the basis（specially the standard basis） of \mathbb{R}^{3} ．In this lecture note，we give a more general definition of basis

Basic Concept：Basis（基），standard basis（标准基），coordinate system（坐标系），coordinate vector（坐标向量），coordinate mapping（坐标映射）

2 Basis（基）

Definition 1 （linear independence）．Let V be a vector space．Vectors $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$ are said to be linearly independent iff（if and only if）

$$
c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}=\overrightarrow{0}
$$

implies

$$
c_{1}=\cdots=c_{n}=0 .
$$

The set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ of vectors is called an independent set if $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent．

注：这里linear independence是一个generalized的定义，是指在一般向量空间中的定义。如果向量空间是欧式空间，就是我们第一章的线性独立的定义。在本学期课程，线性空间暂时限制在欧式空间上定义。
Remarks：
1．Vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are said to be linearly dependent if they are not linearly independent，or equivalently，there exists $c_{1}, \ldots, c_{n} \in \mathbb{R}$ which are not all zero such that

$$
c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}=\overrightarrow{0} .
$$

2．If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a linearly independent set then any subset of it is linearly independent．

3．If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a linearly dependent set then any superset of it，that is any set contains $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ ，is linearly dependent．

4．As in the case of $\mathbb{R}^{n}, \overrightarrow{0}$ itself is linearly dependent．So if one of $\vec{v}_{1}, \ldots, \vec{v}_{n}$ is $\overrightarrow{0}$ ，then $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly dependent．

Definition 2 （basis（基））．Let V be a vector space and $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ an indexed set of vectors of V ．Then \mathcal{B} is called a basis of V iff
（1） \mathcal{B} is linearly independent；
（2）$V=\operatorname{Span} \mathcal{B}$ ．
Also define the empty set \emptyset to be the basis of the trivial space $\{\overrightarrow{0}\}$ ，namely a vector space contains only the zero vector．

Example：For any $n \in \mathbb{Z}^{+},\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of \mathbb{R}^{n} ，which is called the standard basis（标准基）of \mathbb{R}^{n} 。

Example：For any $n \in \mathbb{Z}^{+},\left\{1, \ldots, x^{n}\right\}$ forms a basis of $\mathbb{R}_{n}[x]$ ．It is obvious that $\mathbb{R}_{n}[x]=\operatorname{Span}\left\{1, \ldots, x^{n}\right\}$ ．On the other hand，if $c_{0}+c_{1} x+\cdots+c_{n} x^{n}=0$ then $c_{0}=\cdots=c_{n}=0$ by equality of polynomials．

Theorem 3. Let V be a vector space and $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\} \subseteq V$. If $V=\operatorname{Span} S$ then some subset of S forms a basis of V.

Proof. 1. If $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent, then by assumption, S is a basis of V.
2. Otherwise, $\vec{v}_{1}, \ldots, \vec{v}_{n}$ is linearly dependent. So there exists $\vec{v}_{i} \in S$ such that \vec{v}_{i} is a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_{n}$. Define $S_{n-1}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_{n}\right\}$. Then we have $V=\operatorname{Span} S=$ Span S_{n-1}. Now $S_{n-1} \subseteq S$ is either a basis of V or a linear dependent set. For the case that S_{n-1} is linearly dependent, again we can remove some $\vec{v}_{j} \in S_{n-1}$ from S_{n-1} to obtain $S_{n-2} \subseteq S_{n-1}$ such that $V=\operatorname{Span} S_{n-2}$. Repeat this process and finally, we must obtain a linearly independent subset S_{k} of S such that $V=\operatorname{Span} S_{k}$. Thus, S_{k} is a basis of V.

Theorem 4. If two matrix A and B are row equivalent. Then, the columns of A has exactly the same linear dependence relationships as the columns of B.

Proof. As A and B are row equivalent, that is A can be row reduced to a matrix B. That is the matrix equations $A \vec{x}=\overrightarrow{0}$ and $B \vec{x}=\overrightarrow{0}$ have exactly the same set of solutions. That is the columns of A have exactly the same linear dependence relationships as the columns of B.

Theorem 5. The pivot columns of a matrix A form a basis for ColA.
Proof. We prove this theorem by Four steps: (1) We need to use the result of the last theorem. Let B be the reduced echelon form of A. The set of pivot columns of B is linearly independent, because no vector in the set is linear combination of the vectors that precede it.
(2) Since A is row equivalent to B, the pivot columns of A are linearly independent as well according to Theorem 4.
(3) The nonpivot columns of B must be the linear combination of the pivot columns of B.
(4) For this same reason, every nonpivot column of A is a linear combination of the pivot columns of A. Thus the nonpivot columns of A may be discarded from the spanning set for $\operatorname{Col} A$, by the Spanning Set theorem. This leaves the pivot columns of A as a basis for $\operatorname{Col} A$.

3 Coordinate Systems

We first give the definition of coordinate and then we prove that the representation is unique.

Definition 6 (coordinate). Suppose $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ is a basis for V and \vec{x} is in V. The coordinates of \vec{x} relative to the basis \mathcal{B} are the weights c_{1}, \cdots, c_{n} such that $\vec{x}=c_{1} \vec{b}_{1}+\cdots+c_{n} \vec{b}_{n}$. The vector $\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right) \in \mathbb{R}^{n}$ is called the coordinate vector of \vec{x} with respect to basis \mathcal{B} (\mathcal{B}-coordinates of \vec{x}) and is denoted by $[\vec{x}]_{\mathcal{B}}$.

We now prove that the coordinate with respect to basis \mathcal{B} is unique.
Theorem 7. Let V be vector space and $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis of V. Then for each $\vec{x} \in V$, there exists a unique $\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right) \in \mathbb{R}^{n}$ such that

$$
\vec{x}=c_{1} \vec{b}_{1}+\cdots+c_{n} \vec{b}_{n}=\left(\begin{array}{lll}
\vec{b}_{1} & \cdots & \vec{b}_{n}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

Proof. The existence of $\left(c_{1} \cdots c_{n}\right)^{T} \in \mathbb{R}^{n}$ follows $V=\operatorname{Span} \mathcal{B}$. Now suppose that $\left(c_{1}^{\prime} \cdots c_{n}^{\prime}\right)^{T} \in \mathbb{R}^{n}$ and $\vec{x}=c_{1}^{\prime} \vec{b}_{1}+\cdots+c_{n}^{\prime} \vec{b}_{n}$. Then
$\overrightarrow{0}=\vec{x}-\vec{x}=\left(c_{1} \vec{b}_{1}+\cdots+c_{n} \vec{b}_{n}\right)-\left(c_{1}^{\prime} \vec{b}_{1}+\cdots+c_{n}^{\prime} \vec{b}_{n}\right)=\left(c_{1}-c_{1}^{\prime}\right) \vec{b}_{1}+\cdots+\left(c_{n}-c_{n}^{\prime}\right) \vec{b}_{n}$.
Since $\vec{b}_{1}, \ldots, \vec{b}_{n}$ are linearly independent, so $c_{1}-c_{1}^{\prime}=\cdots=c_{n}-c_{n}^{\prime}=0$. That is $c_{i}=c_{i}^{\prime}$ for all i. The uniqueness follows.

4 Coordinate Mapping: A Linear Transformation View

Given a basis $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ of \mathbb{R}^{n}, for any $\vec{x} \in \mathbb{R}^{n}$, its coordinates are $c_{1}, c_{2}, \cdots, c_{n}$. We actually can rewrite the following relations:

$$
\begin{equation*}
\vec{x}=c_{1} \vec{b}_{1}+\cdots+c_{n} \vec{b}_{n}=P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} . \tag{2}
\end{equation*}
$$

We call $P_{\mathcal{B}}$ the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^{n}.

Note that $P_{\mathcal{B}}$ is invertible (because the corresponding linear transformation is injective and $P_{\mathcal{B}}$ is a square matrix). So we also have:

$$
\begin{equation*}
P_{\mathcal{B}}^{-1} \vec{x}=[\vec{x}]_{\mathcal{B}} . \tag{3}
\end{equation*}
$$

From what we have learned from matrix theory, we have the following:
Theorem 8. Let $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis of \mathbb{R}^{n}. Then, the linear transformation $T: P_{\mathcal{B}}^{-1} \vec{x} \rightarrow[\vec{x}]_{\mathcal{B}}$ is injective (one-to-one) from \mathbb{R}^{n} to \mathbb{R}^{n}. We call $P_{\mathcal{B}}^{-1}$ the Coordinate Mapping.

Now we wish to generalize the above theorem for a more general vector space V as follows:

Theorem 9. Let $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis of V. Then, the transformation $T(\vec{x})=[\vec{x}]_{\mathcal{B}}$ is linear and injective (one-to-one) from V to \mathbb{R}^{n}.

Proof. There are two steps to prove this theorem. We first need to prove T is a linear transformation. Second we need to prove it is one-to-one.
Step 1: Let \vec{u}, \vec{v} be two vectors in V, then we have:

$$
\vec{v}=c_{1} \vec{b}_{1}+\cdots+c_{n} \vec{b}_{n}, \vec{u}=d_{1} \vec{b}_{1}+\cdots+d_{n} \vec{b}_{n} .
$$

So for any scalar e, f ，we have

$$
\begin{align*}
& T(e \vec{v}+f \vec{u}) \\
& =T\left(\left(e c_{1}+f d_{1}\right) \vec{b}_{1}+\cdots+\left(e c_{n}+f d_{n}\right) \vec{b}_{n}\right) \\
& =\left(\begin{array}{c}
e c_{1}+f d_{1} \\
\vdots \\
e c_{n}+f d_{n}
\end{array}\right) \tag{4}\\
& a=e\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)+f\left(\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right) \\
& =e[\vec{v}]_{\mathcal{B}}+f[\vec{u}]_{\mathcal{B}} \\
& =e T(\vec{v})+f T(\vec{u}) .
\end{align*}
$$

Step 2：We need to prove T is one－to－one．Suppose for any \vec{v}, \vec{u} ，

$$
\vec{v}=c_{1} \vec{b}_{1}+\cdots+c_{n} \vec{b}_{n}, \vec{u}=d_{1} \vec{b}_{1}+\cdots+d_{n} \vec{b}_{n} .
$$

If $T(\vec{v})=T(\vec{u})$ ，then $T(\vec{v}-\vec{u})=\overrightarrow{0}$ ．That is $c_{1}-d_{1}=0, \cdots, c_{n}=d_{n}$ ，and therefore $\vec{v}-\vec{u}$

注：下面的概念只要求了解。

Definition 10 （isomorphism（同构））．In general a one－to－one linear transfor－ mation from a vector space V onto a vector space W is called an isomorphism from V to W

5 Change of Basis

Definition 11 （Change－OF－COORDINATES MATRIX，坐标变换）．Let V be a vector space of dimension n with bases $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ and $\mathcal{C}=$ $\left\{\vec{c}_{1}, \ldots, \vec{c}_{n}\right\}$ ．Then for $i=1, \ldots, n$ ，we have

$$
\vec{c}_{i}=\left(\vec{b}_{1} \cdots \vec{b}_{n}\right)\left[\vec{c}_{i}\right]_{\mathcal{B}} .
$$

It is convenient to write

$$
\left(\begin{array}{lll}
\vec{c}_{1} & \cdots & \vec{c}_{n}
\end{array}\right)=\left(\begin{array}{lll}
\vec{b}_{1} & \cdots & \vec{b}_{n}
\end{array}\right)\left(\left[\vec{c}_{1}\right]_{\mathcal{B}} \cdots \cdots\left[\vec{c}_{n}\right]_{\mathcal{B}}\right)=\left(\begin{array}{lll}
\vec{b}_{1} & \cdots & \vec{b}_{n}
\end{array}\right)[\mathcal{C}]_{\mathcal{B}} .
$$

The $n \times n$ matrix $[\mathcal{C}]_{\mathcal{B}}=\left(\left[\vec{c}_{1}\right]_{\mathcal{B}} \cdots\left[\vec{c}_{n}\right]_{\mathcal{B}}\right)$ is called the matrix from bases \mathcal{C} to \mathcal{B} ．

Theorem 12. Let V be a vector space of dimension n with bases $\mathcal{B}=$ $\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ and $\mathcal{C}=\left\{\vec{c}_{1}, \ldots, \vec{c}_{n}\right\}$. Then for any $\vec{v} \in V$,

$$
[\vec{v}]_{\mathcal{B}}=[\mathcal{C}]_{\mathcal{B}}[\vec{v}]_{\mathcal{C}} .
$$

Proof. We have

$$
\vec{v}=\left(\vec{c}_{1} \cdots \vec{c}_{n}\right)[\vec{v}]_{\mathcal{C}}=\left(\vec{b}_{1} \cdots \vec{b}_{n}\right)[\mathcal{C}]_{\mathcal{B}}[\vec{v}]_{\mathcal{C}}
$$

On the other hand, $\vec{v}=\left(\vec{b}_{1} \cdots \vec{b}_{n}\right)[\vec{v}]_{\mathcal{B}}$. By the uniqueness of coordinates, we must have $[\vec{v}]_{\mathcal{B}}=[\mathcal{C}]_{\mathcal{B}}[\vec{v}]_{\mathcal{C}}$.

Remarks: 1. Matrix $[\mathcal{C}]_{\mathcal{B}}$ is invertible, since its rank is n. It is easy to see that $[\mathcal{C}]_{\mathcal{B}}^{-1}=[\mathcal{B}]_{\mathcal{C}}$. So

$$
[\vec{v}]_{\mathcal{C}}=[\mathcal{C}]_{\mathcal{B}}^{-1}[\vec{v}]_{\mathcal{B}}=[\mathcal{B}]_{\mathcal{C}}[\vec{v}]_{\mathcal{B}} .
$$

2. We know that $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis of \mathbb{R}^{n}. Now let $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be any basis of \mathbb{R}^{n}. Then

$$
[\mathcal{B}]_{\mathcal{E}}=\left(\left[\vec{b}_{1}\right]_{\mathcal{E}} \cdots\left[\vec{b}_{n}\right]_{\mathcal{E}}\right)=\left(\vec{b}_{1} \cdots \vec{b}_{n}\right)
$$

Examples: Textbook P.274, P. 275 .

The Feast in the House of Levi, by Veronese

