LECTURE NOTE ON LINEAR ALGEBRA

14. LINEAR INDEPENDENCE, BASES AND
COORDINATES

Wei-Shi Zheng,
wszheng@ieee.org, 2011

November 3, 2011

1 What Do You Learn from This Note

Do you still remember the unit vectors we have introduced in Chapter 1:

1 0 0
= 01],é&=1],ea=|(0]. (1)
0 0 1

They are a set of vectors which are the basis (specially the standard basis)
of R3. In this lecture note, we give a more general definition of basis

Basic Concept: Basis(3), standard basis(FrfE2E), coordinate system (44
FR#R), coordinate vector(AAR [ H), coordinate mapping (A4 kRS )

2 Basis(3%)

Definition 1 (linear independence). Let V' be a vector space. Vectors
U1,...,0, € V are said to be linearly independent iff (if and only if)

01171+...+Cn17n20
implies
cp=---=¢,=0.

The set {#7,...,0,} of vectors is called an independent set if ¥, ..., v, are
linearly independent.
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Remarks:

1. Vectors vy, ...,7, are said to be linearly dependent if they are not
linearly independent, or equivalently, there exists cy,...,c, € R which
are not all zero such that

v + ...+ ¢,v, = 0.

2. If {¢4,...,7,} is a linearly independent set then any subset of it is
linearly independent.

3. If {t4,...,7,} is a linearly dependent set then any superset of it, that
is any set contains {1, ..., 4,}, is linearly dependent.

—

4. As in the case of R", ( itself is linearly dependent. So if one of 7, . . ., ¥,
is 0, then vy, ..., v, are linearly dependent.

Definition 2 (basis(3£)). Let V be a vector space and B = {by,...,b,} an
indexed set of vectors of V. Then B is called a basis of V iff

(1) B is linearly independent;

(2) V = SpanB.

Also define the empty set () to be the basis of the trivial space {6}, namely
a vector space contains only the zero vector.

Example: For any n € ZT, {e1,...,e,} is a basis of R™, which is called the
standard basis (FrifEdE) of R™.

Example: For any n € Z*, {1,...,2"} forms a basis of R,[z]. Tt is obvious
that R, [z] = Span{l,...,2"}. On the other hand, if co+c1z+---+c,2" =0
then ¢y = --- = ¢, = 0 by equality of polynomials.



Theorem 3. Let V be a vector space and S = {#},...,0,} C V. If
V' = Span S then some subset of S forms a basis of V.

Proof. 1. If vy, ..., v, are linearly independent, then by assumption, S is

a basis of V.

2. Otherwise, v7,...,7, is linearly dependent. So there exists v; € §
such that 7; is a linear combination of oy,...,0;_1,¥it1,...,0,. De-
fine S, = {v,...,¥i_1,Uit1,...,Us}. Then we have V' = Span § =
Span.S,_1. Now S,_1 C S is either a basis of V or a linear depen-
dent set. For the case that S,,_; is linearly dependent, again we can
remove some ¥; € S,_1 from S,_; to obtain S,_» C S, _; such that
V = Span S,,_5. Repeat this process and finally, we must obtain a lin-
early independent subset S; of S such that V' = Span Sy. Thus, Sy is
a basis of V.

m

Theorem 4. If two matriz A and B are row equivalent. Then, the columns
of A has exactly the same linear dependence relationships as the columns of

B.

Proof. As A and B are row equivalent, that is A can be row reduced to a
matrix B. That is the matrix equations A7 = 0 and BZ = 0 have exactly
the same set of solutions. That is the columns of A have exactly the same
linear dependence relationships as the columns of B. O

Theorem 5. The pivot columns of a matrix A form a basis for ColA.

Proof. We prove this theorem by Four steps: (1) We need to use the result
of the last theorem. Let B be the reduced echelon form of A. The set of
pivot columns of B is linearly independent, because no vector in the set is
linear combination of the vectors that precede it.

(2) Since A is row equivalent to B, the pivot columns of A are linearly
independent as well according to Theorem 4.

(3) The nonpivot columns of B must be the linear combination of the pivot
columns of B.

(4) For this same reason, every nonpivot column of A is a linear combination
of the pivot columns of A. Thus the nonpivot columns of A may be discarded
from the spanning set for ColA, by the Spanning Set theorem. This leaves
the pivot columns of A as a basis for ColA. n



3 Coordinate Systems

We first give the definition of coordinate and then we prove that the
representation is unique.

Definition 6 (coordinate). Suppose B = {51, e I;n} is a basis for' V and ¥ is

in V. The coordinates of & relative to the basis B are the weights cy,--- , ¢,
C1

such that ¥ = 0151 4+ e+ cnl;n. The vector : € R™ s called the
Cn,

coordinate vector of T with respect to basis B (B-coordinates of ¥) and is
denoted by [Z]g.

We now prove that the coordinate with respect to basis B is unique.

Theorem 7. Let V be vector space and B = {l;l, ce l_fn} be a basis of V.

C1
Then for each # € V, there exists a unique : € R” such that
Cn
C1
T=ciby+- -+ cuby = (by -+ by) :
Cn

Proof. The existence of (¢; -+ ¢,)T € R™ follows V = Span B. Now suppose
that (¢} --- )T € R" and ¥ = ¢}b; + - - + ¢/,b,. Then

0= Z—1 = (c1by+- - ~+abp) = (01 +- -+, bn) = (e1—¢) b4+ -+ (cn—C,) )b

Since 51, e ,l;n are linearly independent, so ¢; — ¢}, = - -+ = ¢, — ¢/, = 0. That
is ¢; = ¢ for all i. The uniqueness follows. O



4 Coordinate Mapping: A Linear Transfor-
mation View

Given a basis B = {51, e ,gn} of R™, for any ¥ € R", its coordinates are
c1,Co, -+, Cqp. We actually can rewrite the following relations:
T=c1by + - + coby = P3[T]5. (2)

We call Pg the change-of-coordinates matrix from B to the standard basis in
R™.

Note that Pg is invertible (because the corresponding linear transforma-
tion is injective and Pg is a square matrix). So we also have:

Py'i = [i]s. (3)

From what we have learned from matrix theory, we have the following:

Theorem 8. Let B = {l;l, o ,l;n} be a basis of R™. Then, the linear trans-
formation T : Pg'% — [#]p is injective (one-to-one) from R™ to R™. We
call Py ! the Coordinate Mapping.

Now we wish to generalize the above theorem for a more general vector
space V' as follows:

Theorem 9. Let B = {l;l, . l;n} be a basis of V.. Then, the transformation
T(Z) = [Z]p is linear and injective (one-to-one) from V to R™.

Proof. There are two steps to prove this theorem. We first need to prove T
is a linear transformation. Second we need to prove it is one-to-one.
Step 1: Let 4,7 be two vectors in V', then we have:

-

1726151+"’+Cn5n, ﬁ:d151++dnbn



So for any scalar e, f, we have

T(ev + fu)
=T((ec; + fdl)gl + -+ (ec, + fdn)gn)
ecy + fdy
ecn%;fd
4
. (4)
a= :
d,
= 6[_’6 + flu]
= eT( ) -+ fT( )

Step 2: We need to prove T is one-to-one. Suppose for any v, ,

= 1b1+ +Cn5n7 ﬁ:dlgl‘i‘"'—i‘dngn-

If T(7) = T(@), then T(7 — @) = 0. Thatis ¢, —dy = 0,--- ,¢, = d, and
therefore v — @ n
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Definition 10 (isomorphism([Fl#4)). In general a one-to-one linear transfor-
mation from a vector space V onto a vector space W is called an isomorphism

from V to W

5 Change of Basis

Definition 11 (CHANGE-OF-COORDINATES MATRIX, AR Fr A5 #t). Let V

be a vector space of dimension n with bases B = {51, - ,l;n} and C =
{¢,...,¢}. Then for i =1,...,n, we have
G=(b - by)[cls

(cl 5n) = (bl bn)([gl]B [571]8) = (bl bn)[C]B'

The n x n matrix [C]g = ([¢1]s -+ [Cn]p) is called the matrix from bases C
to B.



T_)heorelln 12. Let V be a vector space of dimension n with bases B =
{b1,...,by} and C ={¢&,...,G,}. Then for any v € V,

[0l = [Cls[Te-
Proof. We have
U=(c - G)[tle = (b1 -+ bn)[Cl8[0e
On the other hand, 7 = (b --- b,)[#]s. By the uniqueness of coordinates,

we must have [0z = [C]s[0V]c. O

Remarks: 1. Matrix [C|p is invertible, since its rank is n. It is easy to see

that [C]z' = [Ble. So

[T]e = [Cl5' ()5 = [Ble[t]s.

2. We know that & = {ey,...,e,} is the standard basis of R". Now let
B = {by,...,b,} be any basis of R". Then

— —

[Ble = ([Bi)e -+ [bale) = (b1 --- Ba);

Examples: Textbook P.274, P.275.

THE FEAST IN THE HOUSE OF LEVI, by Veronese



