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1 What Do You Learn from This Note

Do you still remember the unit vectors we have introduced in Chapter 1:

e⃗1 =

 1
0
0

 , e⃗2 =

 0
1
0

 , e⃗3 =

 0
0
1

 . (1)

They are a set of vectors which are the basis (specially the standard basis)
of R3. In this lecture note, we give a more general definition of basis

Basic Concept：Basis(基), standard basis(标准基), coordinate system(坐
标系), coordinate vector(坐标向量)，coordinate mapping(坐标映射)

2 Basis(基基基)

Definition 1 (linear independence). Let V be a vector space. Vectors
v⃗1, . . . , v⃗n ∈ V are said to be linearly independent iff (if and only if)

c1v⃗1 + . . .+ cnv⃗n = 0⃗

implies
c1 = · · · = cn = 0.

The set {v⃗1, . . . , v⃗n} of vectors is called an independent set if v⃗1, . . . , v⃗n are
linearly independent.
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注：这里linear independence是一个generalized的定义，是指在一般向
量空间中的定义。如果向量空间是欧式空间，就是我们第一章的线性独立
的定义。在本学期课程，线性空间暂时限制在欧式空间上定义。
Remarks:

1. Vectors v⃗1, . . . , v⃗n are said to be linearly dependent if they are not
linearly independent, or equivalently, there exists c1, . . . , cn ∈ R which
are not all zero such that

c1v⃗1 + . . .+ cnv⃗n = 0⃗.

2. If {v⃗1, . . . , v⃗n} is a linearly independent set then any subset of it is
linearly independent.

3. If {v⃗1, . . . , v⃗n} is a linearly dependent set then any superset of it, that
is any set contains {v⃗1, . . . , v⃗n}, is linearly dependent.

4. As in the case of Rn, 0⃗ itself is linearly dependent. So if one of v⃗1, . . . , v⃗n
is 0⃗, then v⃗1, . . . , v⃗n are linearly dependent.

Definition 2 (basis(基)). Let V be a vector space and B = {⃗b1, . . . , b⃗n} an
indexed set of vectors of V . Then B is called a basis of V iff
(1) B is linearly independent;
(2) V = SpanB.
Also define the empty set ∅ to be the basis of the trivial space {⃗0}, namely
a vector space contains only the zero vector.

Example: For any n ∈ Z+, {e1, . . . , en} is a basis of Rn, which is called the
standard basis (标准基) of Rn.

Example: For any n ∈ Z+, {1, . . . , xn} forms a basis of Rn[x]. It is obvious
that Rn[x] = Span{1, . . . , xn}. On the other hand, if c0+c1x+ · · ·+cnx

n = 0
then c0 = · · · = cn = 0 by equality of polynomials.
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Theorem 3. Let V be a vector space and S = {v⃗1, . . . , v⃗n} ⊆ V . If
V = SpanS then some subset of S forms a basis of V .

Proof. 1. If v⃗1, . . . , v⃗n are linearly independent, then by assumption, S is
a basis of V .

2. Otherwise, v⃗1, . . . , v⃗n is linearly dependent. So there exists v⃗i ∈ S
such that v⃗i is a linear combination of v⃗1, . . . , v⃗i−1, v⃗i+1, . . . , v⃗n. De-
fine Sn−1 = {v⃗1, . . . , v⃗i−1, v⃗i+1, . . . , v⃗n}. Then we have V = SpanS =
SpanSn−1. Now Sn−1 ⊆ S is either a basis of V or a linear depen-
dent set. For the case that Sn−1 is linearly dependent, again we can
remove some v⃗j ∈ Sn−1 from Sn−1 to obtain Sn−2 ⊆ Sn−1 such that
V = SpanSn−2. Repeat this process and finally, we must obtain a lin-
early independent subset Sk of S such that V = SpanSk. Thus, Sk is
a basis of V .

Theorem 4. If two matrix A and B are row equivalent. Then, the columns
of A has exactly the same linear dependence relationships as the columns of
B.

Proof. As A and B are row equivalent, that is A can be row reduced to a
matrix B. That is the matrix equations Ax⃗ = 0⃗ and Bx⃗ = 0⃗ have exactly
the same set of solutions. That is the columns of A have exactly the same
linear dependence relationships as the columns of B.

Theorem 5. The pivot columns of a matrix A form a basis for ColA.

Proof. We prove this theorem by Four steps: (1) We need to use the result
of the last theorem. Let B be the reduced echelon form of A. The set of
pivot columns of B is linearly independent, because no vector in the set is
linear combination of the vectors that precede it.
(2) Since A is row equivalent to B, the pivot columns of A are linearly
independent as well according to Theorem 4.
(3) The nonpivot columns of B must be the linear combination of the pivot
columns of B.
(4) For this same reason, every nonpivot column of A is a linear combination
of the pivot columns of A. Thus the nonpivot columns of A may be discarded
from the spanning set for ColA, by the Spanning Set theorem. This leaves
the pivot columns of A as a basis for ColA.
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3 Coordinate Systems

We first give the definition of coordinate and then we prove that the
representation is unique.

Definition 6 (coordinate). Suppose B = {⃗b1, . . . , b⃗n} is a basis for V and x⃗ is
in V . The coordinates of x⃗ relative to the basis B are the weights c1, · · · , cn

such that x⃗ = c1⃗b1 + · · · + cn⃗bn. The vector

 c1
...
cn

 ∈ Rn is called the

coordinate vector of x⃗ with respect to basis B (B–coordinates of x⃗) and is
denoted by [x⃗]B.

We now prove that the coordinate with respect to basis B is unique.

Theorem 7. Let V be vector space and B = {⃗b1, . . . , b⃗n} be a basis of V .

Then for each x⃗ ∈ V , there exists a unique

 c1
...
cn

 ∈ Rn such that

x⃗ = c1⃗b1 + · · ·+ cn⃗bn = (⃗b1 · · · b⃗n)

 c1
...
cn

 .

Proof. The existence of (c1 · · · cn)T ∈ Rn follows V = SpanB. Now suppose

that (c′1 · · · c′n)
T ∈ Rn and x⃗ = c′1b⃗1 + · · ·+ c′nb⃗n. Then

0⃗ = x⃗−x⃗ = (c1⃗b1+· · ·+cn⃗bn)−(c′1b⃗1+· · ·+c′nb⃗n) = (c1−c′1)⃗b1+· · ·+(cn−c′n)⃗bn.

Since b⃗1, . . . , b⃗n are linearly independent, so c1−c′1 = · · · = cn−c′n = 0. That
is ci = c′i for all i. The uniqueness follows.
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4 Coordinate Mapping: A Linear Transfor-

mation View

Given a basis B = {⃗b1, . . . , b⃗n} of Rn, for any x⃗ ∈ Rn, its coordinates are
c1, c2, · · · , cn. We actually can rewrite the following relations:

x⃗ = c1⃗b1 + · · ·+ cn⃗bn = PB[x⃗]B. (2)

We call PB the change-of-coordinates matrix from B to the standard basis in
Rn.

Note that PB is invertible (because the corresponding linear transforma-
tion is injective and PB is a square matrix). So we also have:

P−1
B x⃗ = [x⃗]B. (3)

From what we have learned from matrix theory, we have the following:

Theorem 8. Let B = {⃗b1, . . . , b⃗n} be a basis of Rn. Then, the linear trans-
formation T : P−1

B x⃗ → [x⃗]B is injective (one-to-one) from Rn to Rn. We
call P−1

B the Coordinate Mapping.

Now we wish to generalize the above theorem for a more general vector
space V as follows:

Theorem 9. Let B = {⃗b1, . . . , b⃗n} be a basis of V . Then, the transformation
T (x⃗) = [x⃗]B is linear and injective (one-to-one) from V to Rn.

Proof. There are two steps to prove this theorem. We first need to prove T
is a linear transformation. Second we need to prove it is one-to-one.
Step 1: Let u⃗,v⃗ be two vectors in V , then we have:

v⃗ = c1⃗b1 + · · ·+ cn⃗bn, u⃗ = d1⃗b1 + · · ·+ dn⃗bn.
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So for any scalar e, f , we have

T (ev⃗ + fu⃗)

= T ((ec1 + fd1)⃗b1 + · · ·+ (ecn + fdn)⃗bn)

=

 ec1 + fd1
...

ecn + fdn


a = e

 c1
...
cn

+ f

 d1
...
dn


= e[v⃗]B + f [u⃗]B

= eT (v⃗) + fT (u⃗).

(4)

Step 2: We need to prove T is one-to-one. Suppose for any v⃗, u⃗,

v⃗ = c1⃗b1 + · · ·+ cn⃗bn, u⃗ = d1⃗b1 + · · ·+ dn⃗bn.

If T (v⃗) = T (u⃗), then T (v⃗ − u⃗) = 0⃗. That is c1 − d1 = 0, · · · , cn = dn, and
therefore v⃗ − u⃗

注：下面的概念只要求了解。

Definition 10 (isomorphism(同构)). In general a one-to-one linear transfor-
mation from a vector space V onto a vector space W is called an isomorphism
from V to W

5 Change of Basis

Definition 11 (change–of–coordinates matrix,坐标变换). Let V

be a vector space of dimension n with bases B = {⃗b1, . . . , b⃗n} and C =
{c⃗1, . . . , c⃗n}. Then for i = 1, . . . , n, we have

c⃗i = (⃗b1 · · · b⃗n)[⃗ci]B.

It is convenient to write

(c⃗1 · · · c⃗n) = (⃗b1 · · · b⃗n)([⃗c1]B · · · [⃗cn]B) = (⃗b1 · · · b⃗n)[C]B.

The n × n matrix [C]B = ([⃗c1]B · · · [⃗cn]B) is called the matrix from bases C
to B.
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Theorem 12. Let V be a vector space of dimension n with bases B =
{⃗b1, . . . , b⃗n} and C = {c⃗1, . . . , c⃗n}. Then for any v⃗ ∈ V ,

[v⃗]B = [C]B[v⃗]C.

Proof. We have

v⃗ = (c⃗1 · · · c⃗n)[v⃗]C = (⃗b1 · · · b⃗n)[C]B[v⃗]C

On the other hand, v⃗ = (⃗b1 · · · b⃗n)[v⃗]B. By the uniqueness of coordinates,
we must have [v⃗]B = [C]B[v⃗]C.

Remarks: 1. Matrix [C]B is invertible, since its rank is n. It is easy to see
that [C]−1

B = [B]C. So

[v⃗]C = [C]−1
B [v⃗]B = [B]C[v⃗]B.

2. We know that E = {e1, . . . , en} is the standard basis of Rn. Now let

B = {⃗b1, . . . , b⃗n} be any basis of Rn. Then

[B]E = ([⃗b1]E · · · [⃗bn]E) = (⃗b1 · · · b⃗n).

Examples: Textbook P.274, P.275.

The Feast in the House of Levi, by Veronese
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